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025, India 
$ Theoretical Physics Institute, University of Alberta, Edmonton T6G 251, Canada 

Received 20 October 1980 

Abstract. Considering relativistic wave equations in the first-order form, wherein the 
transformation of the wavefunction under the proper Lorentz group involves a certain 
number of inequivalent irreducible representations (IIRS) repeated an arbitrary number of 
times, we note some of the restrictions (on the skeleton matrix of the matrices p” occurring 
in the equation and on the spin blocks of P o )  which arise from the requirements ( i )  that the 
equation be barnacle free and (ii) that there be solutions corresponding to a single spin and 
single mass only (without any degeneracy). We show that if the number of IIRS is just two, 
these restrictions permit only two types of equations with no repeated IRS in either case. We 
also consider equations involving three IIRS with arbitrary multiplicity, carry out a reduction 
of the skeleton matrix, and analyse the implications of the above mentioned requirements 
with regard to the possible existence of equations in which the multiplicity of one of the IRS 
is the sum of the multiplicities of the other two. Nothing is assumed about the specific IRS 

involved, except that they are linked. 

1. Introduction 

The problem of the consistency of relativistic wave equations for spinning particles in 
the presence of external fields acting on them, has been studied extensively during the 
past two decades (Johnson and Sudarshan 1961, Vel0 and Zwanziger 1969a,b, Vel0 
and Wightman 1978, Wightman 1968,1971, Federbush 1961, Hagen 1972, Mathews 
1974). It is now well recognised that the various familiar equations for higher spin such 
as the Rarita-Schwinger equation (194 1) for spin-: and the Fierz-Pauli equation for 
spin-:! (1939) became subject to several types of pathologies when an interaction with 
other (external) fields is introduced. For this reason (among others) the construction 
and investigation of new types of wave equations have been taken up by several workers 
(Glass 1971, Capri 1969,1972, Khalil 1977, Hurley and Sudarshan 1975, Fisk and Tait 
1973). The new spin-: equation due to Glass (1971), equations for spin-: derived by 
Capri (1969,1972) and Khalil’s spin-&equation (1977) are examples of such equations. 
They are all of the general form 

(1.1) (-$”a, + m)G = 0.  

0305-4470/81/051193+12$01.50 @ 1981 The Institute of Physics 1193 
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The new element in the derivation of these equations is the deliberate introduction of a 
non-trivial multiplicity in the occurrence of certain irreducible representations (IRS) in 
the representation T(A) of the proper Lorentz group 91 according to which the 
wavefunction is required to transform. 

T(A)  = cu,D‘(R) (1.2) 

where a,  is the multiplicity of the I R  D‘ (we shall hereafter simply write T for the IR;  7 

itself is a short notation for (m, n )  where m, II are non-negative integers or half- 
integers). Once the representation T(A)  is specified, the matrices @” in (1.1) get 
determined (according to the theory of Bhabha (1945, 1949), Wild (1947), Gel’fand 
and Yaglom (1948a,b) to within a certain number of arbitrary parameters forming the 
elements of the skeleton matrix (Mathews et a1 1980) associated with the represen- 
tation. In order to ensure that the equation describes particles of unique spin and mass, 
the elements of the skeleton matrix have to be suitably restricted. However, on carrying 
this process through in particular cases, one does not necessarily get an equation which 
is different from some simpler equation involving fewer IRS. Hurley and Sudarshan 
(1975) (see also Khalil1976) have pointed out that part of the wavefunction may just be 
a ‘barnacle’ whose behaviour is completely determined by the complementary part of 
the wavefunction, which by itself satisfies a simpler wave equation. In fact, several of 
the recently proposed new equations (Capri 1969, 1972, Khalil 1977, Hurley and 
Sudarshan 1975, Fisk and Tait 1973) have been shown to be ‘barnacled’ and have no 
more content (though looking more complicated) than known simpler equations. The 
question then arises: in trying to construct new equations of the form (l.l), is i t  possible 
to ensure in advance that the equation will not turn out to be barnacled? Or better still, 
can one construct exhaustive classes of unbarnacled equations? This paper is devoted 
to an investigation of these questions. Kahlil(l978) has identified certain conditions on 
the skeleton matrix @”, which are necessary and sufficient for barnacles to be absent. 
With these conditions as input, we analyse the spin blocks (of which @’ is a direct sum), 
and impose on them the conditions for uniqueness and non-degeneracy of mass and 
spin of particles described by the wave equation. After deducing a few results 
applicable to the general situation where the number and multiplicity of IRS entering 
into the Lorentz group representation T(A)  (according to which $ transforms) are both 
arbitrary, we show that as far as equations involving two inequivalent IRS are concerned, 
the general results imply that only two special classes of equations are permitted, with 
no non-trivial multiplicity in either. We also consider an instructive example of 
equations involving three inequivalent IRS (with a certain relation between the multi- 
plicities of the IRS). An exhaustive analysis of all such equations will be presented 
separately. 

We wish to emphasise that in contrast to the traditional approach (see for instance 
Bhabha 1945, 1949) to relativistic wave equations of the form (1.1) which involves the 
prescription of certain algebraic properties of the matrices @ ” and subsequent investi- 
gations of the implications of the algebra in respect of the mass and spin content of the 
wave equation, we begin by enforcing the requirements of uniqueness and non- 
degeneracy of mass and spin and the Khalil conditions for the equation not to be the 
same as some simpler equation camouflaged by superfluous ‘barnacles’. While the old 
approach of Duffin (1938) and Kemmer (1939), Madhava Rao (1942) and Bhabha 
(1945, 1949) etc, gets too complicated to be carried much further and, in any case, is 
only an indirect way of placing constraints on the elements of the matrices @’*, our 
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treatment focuses directly on the skeleton matrix which is the repository of all the 
freedom remaining after the compulsions of Lorentz invariance are taken into account. 
We have thus been able to deal with whole classes of equations irrespective of the value 
of the desired physical spin and without a priori specification of multiplicities. 

In Q 2 we recall the relevant general features of the skeleton matrix of the p" in 
barnacle-free theories and also of the spin block pFIi into which p" can be resolved. The 
unique-mass, unique-spin conditions are expressed in terms of the spin blocks and some 
of their implications for the Jordan canonical structures of two square matrices XI ,  Y, of 
which (p?,,)2 is the direct sum, are noted. In 8 3,  we consider the class of all equations 
involving two inequivalent IRS with arbitrary multiplicity and show that, for given mass 
and spin there are just two unbarnacled irreducible equations in this class, namely the 
Hurley equation and another equation involving the IRS (s + i, i) and (s, 0) once each. 
Section 4 deals with equations involving three inequivalent IRS. We establish some 
general properties of spin blocks arising in this case and proceed to use them to study the 
admissibility of equations in which the multiplicities a l ,  a2 ,  c y 3 ,  with which the IRS enter, 
are related by a1 = a2+a3. This is intended to be only an illustrative example. A 
comprehensive analysis of equations involving three inequivalent IRS with multiplicities 
left arbitrary will be presented in a separate paper. 

2. General considerations 

We shall take the wavefunction 4, as usual, to be a direct sum of parts $'T,ui  transforming 
according to the IRS T of the proper Lorentz group 2'1, (The index cr is needed when 
any IR occurs with a multiplicity, to label the various identical IRS.) We recall (Mathews 
et a1 1980a) that the matrix elements of the p" between the states of any two given IRS T'  

and T decompose into a Lorentz group Clebsch-Gordan coefficient and a reduced 
matrix element and that these reduced matrix elements (which can be assigned arbitrary 
values) constitute the skeleton matrix which has a crucial role in determinining the 
algebraic properties of the p". The skeleton matrix C is made up of blocks C'""' 
associated with particular pairs of IRS; and the block C'"3'i has a,, rows and a ,  columns 
where aT, typically, is the multiplicity of the IR T in T ( A ) .  

2.1. Barnacle-free equations 

It has been shown by Khalil that, in order that no barnacles be present, it is necessary 
that the following conditions on the ranks of various submatrices of the skeleton matrix 
be satisfied. 

be the matrix made up of the row of blocks C'""' with T' fixed and T 

varying over all IRS present in T ( h ) .  Its rank must be equal to a,', the multiplicity of the 
IR T ' .  Similarly, if C"'" is the matrix made up of the column of blocks C""" for given T ,  

its rank must be equal to a,. There will be no barnacles if and only if these two 
conditions are satisfied for all T and T ' .  

~~t ~(7':) 

In the present work, these conditions will be imposed at the outset. 

2.2. The spin blocks 

If a basis which diagonalises J 2  and J,  is employed, it becomes possible to write P o  in 
block-diagonal form, as a direct sum of blocks pl)i, associated with the various spins j 
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occurring in one or more of the IRS (m, n )  entering the problem. The spin j block has the 
form 

a;,, x 1 2 i + l  (2.1) 

where ayi, is made up of blocks 

(2.2) 

associated with pairs of IRS T ,  T'  both of which contain j (i.e. such that m + n 2 j 3 Im - n 1 
and m ' + n ' s j S  lm'-n' l) .  C'T'*T) is itself the ( T ' ,  7 )  block of the skeleton matrix and 
gjT'3T' is a Lorentz group Clebsch-Gordan coefficient. Each element of ,Elyi) multiplies a 
unit matrix of dimension (2j + 1) as indicated by the direct product in (2.1). 

A useful illustration is provided by the example of a theory involving just three 
irreducible representations 

C ( T ' . T )  ( T ' , T )  

gi 

1 1 1 
T~ = (m ,  n ) ,  7-7. = ( m  - 3 ,  n +$), 7 3  = ( m  $2, n -z), 

which is of considerable interest. Taking m > n, we see readily that the spins ( m  + n ) ,  
( m  + n - l), . , . , ( m  - n + 1) occur in all the three IRS. Therefore, with the skeleton 
matrix C written as in Mathews er a1 (1980), one has for (m + n )  z j  ( m  - n + 1), 

0 A g i  Bg: 
8". = Dg. 0 (2.3) 

( I )  j E g ;  0 :: 1. 
(Here gi and g: are abbreviations for g:,r13rz) and glrlsr3) respectively.) The value 
( m  - n )  of the spin occurs in 7 1  and T~ but not in T~ if m > n and then 

but it occurs only in T~ if m = n, and then 

a:;,) =o.  ( 2 . 5 )  

Finally, j can take one more value ( m  - n - 1) if m 3 n + 1, and it occurs then in 7-2 so 
that 

P:m--n-l,  = 0. (2 .6)  

2.3. Uniqueness of  mass and spin : non-degeneracy 

Conditions requiring that equation (1.1) should describe particles of unique mass and 
spin find their most direct expression in terms of the spin blocks. If the equation is to 
have solutions for only a single spin s, it is necessary that all the be nilpotent except 

The condition for uniqueness of mass is that all non-zero eigenvalues of the 
various should be of equal'magnitude; they can be required, without loss of 
generality, to be zt1. It follows then that, if both the mass and the spin are required to be 
unique, the only spin block which is allowed to be not nilpotent, pYs), must have its 
non-zero eigenvalues equal to *1. Finally, if there is to be no degeneracy (i.e. there is 
only one particle of mass m and spin s, together with its antiparticle) each of the 
eigenvalues +1 should appear just once. 
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2.4. Bipartite formt-the Xi and Yi matrices 

Now, as was shown in the works of Cox (1974a,b) and Mathews et a1 (1980), P o  can 
always be written (by suitable ordering of the IRS) in block form consisting of two 
vanishing diagonal blocks and two (non-vanishing) off-diagonal blocks. Correspond- 
ingly, pYi) can be written as 

p e l = (  O "i) vj 0 (2.7) 

with Vi, vi, themselves made up of blocks C(T' 'T)g~T' 'T).  The blocks U,, V, are, in general, 
rectangular, but in 

and y .  J = V.U. J J  (2.9) x. = u,v. 
J J J  

are both square matrices. The conditions, stated in the last paragraph, for the wave 
equation to describe a unique (non-degenerate) particle of specified mass m and spin s 
lead to the requirement that Xi and Yi must be nilpotent for every j # s, while for j = s, 
each of them should have a Jordan canonical form consisting of the direct sum of a single 
unit eigenvalue and one or more nilpotent irreducible Jordan blocks (NIJBS). The first 
part of this assertion follows from the fact that for any j # s, flyi)  has to be nilpotent and 
hence does also. On the other hand, (PYs))z has to have one pair of unit 
eigenvalues, and the second part of our assertion is that these are distributed between 
X, and Y,. Since Tr X,  = Tr(U,V,) = Tr( V,U,) = Tr Y, and Tr(p:,))* = 2 = 
Tr X ,  + T r  Y, we have 

TrX,  = T r  Y, = 1 

which shows that of the only two non-zero eigenvalues (equal to unity) one is in X, and 
the other in Y, as asserted. 

We now proceed to use the above result to determine exhaustively the possibilities 
for equations involving just two inequivalent IRS (which occur a priori with arbitrary 
multiplicities), and to investigate a special class of three-IIR equations. 

3. TWO-IIR equations 

When only two inequivalent IRS 

T1=(ml,  n l )  and Tz=(m2,nz)  (3.1) 

are present (with multiplicities cy1 and a z )  in T(A) ,  the skeleton matrix has the form 

C = ( O  B O  A )  (3 .2 )  

where A is an cyl  X cy2 matrix and B an cyz x cyI  matrix, both with arbitrary elements. For 
absence of barnacles, it is necessary that A,  considered as C(T13')  must have rank cy1, 

t This term is used to describe the form of P o  (and of pyi, introduced below, since the form is a consequence of 
the bipartite nature of the graphs (Cox 1974a,b) characterising the linking of various IRS by the p". 
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while, B considered as C('3T2)  must have rank L Y ~ .  Taken together, these conditions 
require 

(3.3) 

(say). Consequently A has to be a non-singular square matrix (rank =dimension = a )  
and the same is true for B. 

The spin block by,) associated with any spin value j contained in both T~ and 7-2 is 
now 

cy1 = cy2 = cy. 

(3.4) 

Considering (py,j)2, one notes that 

X ,  5 g:AB and Y,  = g:BA (3.6) 

are non-singular matrices and hence have all eigenvalues non-zero. However, since we 
demand non-degeneracy, which permits only a single non-zero eigenvalue each for X ,  
and Y,, we are forced to the conclusion that cy = 1 only is allowed. 

Any non-trivial multiplicity being thus ruled out, we have A and B as single 
numbers, say a and b, and then X,  = Y, = g: ab. This must be equal to unity for j = s, the 
desired physical spin 

(3.7) 

If any j # s existed which also occurs in both T I  and T~ (i.e. for which g, # 0) then, for 
such j ,  X, and Y, would also be non-zero, meaning that non-trivial solutions of the wave 
equations would exist for spin j # s also. Hence, for uniqueness of spin we require that s 
be the only spin present in both the IRS. The only possibilities consistent with this 
requirement and with the condition Iml - m2/ = Inl - n21= which is necessary for 7-1 

and T~ in (3.1) to be linked, are 

(3.8) 

2 ab = ( g s ) -  . 

T(h) - (s, O ) @ ( S  -3, 5 )  

T ( A )  - (S + $, 5 )  0 (s, 0) 

which corresponds to the Hurley equation, and 

(3.9) 

which has not apparently been considered in the literature for general spin. The 
Kemmer equation for spin-0 belongs to the class (3.9) with s = 0, and the Dirac 
equation to (3.8) with s = 5 .  These two special cases are the only ones to admit parity 
invariance. 

4. Three-rrR equations 

4.1. The skeleton matrix 

We consider now equations involving just three distinct IRS T ~ ,  7-2, 7-3 occurring with 
arbitrary multiplicities a1, a2, a3. Let 7-2 and T~ be such that they can be linked directly 
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to T~ through the p*, say, 

71 = (m,  n )  

(4.1) 1 
7 2  = ( m  + T E 2 ,  II + i 7 7 2 )  

73 = ( m  + T E ~ ,  n + iq3)  1 

with g 2 ,  v2, .s3 and 773 equal to +1 or -1 independently. Then it is self-evident that ~2 

and T~ cannot be directly linked by the p” .  So the skeleton matrix takes the form 

O A B a l  
C = ( D  0 0 a2) (4.2) 

E O  0 a3 

a1 a2 a 3  

where A is a short notation for the block C(T13Tz) which has a 1  rows and a 2  columns, and 
similarly for the other blocks B, D, E. 

The conditions of 0 2.1 for the absence of barnacles require in the present case that 
the ranks r of the various submatrices of C be as follows: 

r(A) = r (D)  = a2 

r ( B )  = r(E)  = cy3 ( 4 . 3 ~  j 

D 
r(A, B) = r (  E )  = a l .  

From these it may be noted that 

a1 5 a 2 ,  a 3  and C Y ~ + C Y ~  2 ( ~ 1 .  (4.36) 

Subject to the conditions ( 4 . 3 ~ )  and (4.3b),  the elements of the submatrices A ,  B, D, E 
are quite arbitrary, but some of this arbitrariness is not essential. 

Similarity transformations which mix equivalent IRS among themselves do not affect 
the transformation property of the wavefunction, and one can exploit this freedom (see 
Appendix) to replace the skelton matrix (4.2) by an equivalent one in which 

D =  (i 
E =  (g 

(a l  - a 3 )  rows 
( ( Y Z + ( Y 3 - a 1 )  rows 

( 4 . 4 ~ )  

( a 2 + ~ ~ 3 - ~ ~ 1 )  rows 
(a l  - a 2 )  rows. 

(4.4b) 

We shall refer to these as the standard forms of D and E, wherein the unit matrices I 
and null blocks 0 have dimensions as indicated. In making similarity transformations, 
the submatrices A and B also get transformed of course. Further similarity trans- 
formations are possible which take A and B also to simpler forms without disturbing the 
above structure of D and E, but the variety of possibilities is such that it is not profitable 
to consider them at this stage. We shall deal with them in connection with specific 
classes of theories in a future publication (Mathews and Vijayalakshmi 1980). 
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4.2. Spin blocks 

We observe at the outset that, if the spin values contained in T ~ ,  T~ and T~ are examined, 
most of them would be appearing in all three IRS. We shall refer to these as common 
spins. Any spin value which occurs in just two of the IRS ( T ~  and one other, which will be, 
by convection, taken as T ~ ) ,  will be referred to as a special spin. There may also be spin 
values which occur in only one of the three IRS, but these do not have any significant 
role, and there will be no further reference to them. 

The spin block associated with spin j ,  namely 

if j is a special spin (occurring in T~ and T~ only), while 

if j is a common spin. In either case 

rank of Py,, = rank of U, +rank of V, 
= 2 x rank of U,. (4.8) 

This follows from the self-evident fact that the rows of (0, U,) in (4.5) are linearly 
independent of those of (V,, 0). 

Consider now the square matrices 

x, = u,v, and y = VU,. (4.9) 

As already noted, neither is permitted to have any non-zero eigenvalue if j # s, while 
each has one unit eigenvalue if j = s .  So it follows that, whenever the dimension of 
either of these matrices exceeds unity, its Jordan canonical form must necessarily 
include one or more NIJBS. Conversely, if X, or Y, is non-singular, its dimension must 
necessarily be unity. 

We shall now illustrate the power of the above results in the determination of 
admissible types of equations, by considering a special class. 

4.3. The ‘stretched case ; a1 = az + a3 

In this case a l  is stretched to the highest value it can take in barnacle-free theories for 
given c y 2  and a3 of equation (4.3b). In the skeleton matrix C, the number of rows cy1 of 
the submatrix ( A  B )  then becomes equal to the number of columns, a2 + a3. Further, 
for absence of barnacles, the rank also is to be a l .  Thus ( A  B )  constitutes a non-singular 
square matrix, and so does g, for similar reasons. 

Consider now the spin block for a common spin j 

(4.10) 

It is evident that Ui-(gjA, g $ )  has the same rank a1 as ( A B ) ;  so also for V,. 
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Consequently, in (pi1j,)2, Xi = UiV, and Yi = VUj,  are both non-singular matrices. But 
we permit non-zero eigenvalues for X j  and Yj only for j = s, the particular spin which it 
is desired the particle should have. Therefore, if we are to have a unique-spin theory, 
there must be only a single j = s for which the spin block is of the above form. (This 
would restrict n in (4.1) to be t or 1 depending on the values of the E ’ S  and 77’s). 

While uniqueness of spin can thus be enforced, it turns out that uniqueness and 
non-degeneracy of mass cannot. The problem is that the matrices X ,  and Y, which are 
non-singular are of dimension a1 a2 + a3 3 2 (since a2, a3 3 1) and therefore violate 
the condition deduced in 9 4.2 that X ,  and Y,, if non-singular, must be of unit 
dimension. 

Therefore, there are no admissible equations in the class characterised by a1 = 
a 2  f a3. 

5. Summary 

In this paper we have developed a technique to construct and analyse relativistic wave 
equations when repeated IRS are allowed with arbitrary (unspecified) multiplicities and 
transformation properties. Making use of this technique we study equations involving 
two IIRS as well as a particular class of equations involving three IRS. In spite of the 
generality of the initial input, we find that only two cases survive, namely, Hurley’s 
equations based on the representation (s, 0)O (s - t ,  $) and the rather similar equations 
involving the representation (s, O)@ (s + 1, i) with unit multiplicity. Of these, the Dirac 
equation for spin-: and the Duffin-Kemmer-Petiau equation for spin-0 are the only 
ones which have parity invariance. Also, in the case of three IIRS with the multiplicities 
arranged as a 1  = a2  + a3, no unique-spin, unique-mass equation can be accommodated. 
A consideration of more general cases of equations involving three IIRS requires the use 
of certain properties of matrices (especially nilpotent matrices) which one hardly ever 
finds applied. A presentation of these together with an exhaustive analysis of equations 
with three IIRS will be given in a separate paper (Mathews and Vijayalakshmi 1980). 
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Appendix 

The wavefunction is assumed to be taken in the Lorentz reduced form 
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wherein, under a Lorentz transformation A, 

(T = 1,. . . , a,. 

Since any linear combination of the for fixed i will also transform according to the 
IR T,,  the Lorentz reduced form will be preserved and the transformation law (A.2) will 
remain unaffected if the following change of basis mixing identical IRS is made: 

(A.2) *([.") + DT,(A)$(,-"); 

i.e. 

* I +  U;'*[; *+ U-'* (A.4) 
where U, is an arbitrary non-singular matrix of dimension a,, and U is block diagonal, 
being the direct sum of the blocks U,. This freedom can be used to simplify the forms of 
the p" without any loss of generality. The effect of the change of basis (A.4) on the p I.L is 
to transform the skeleton matrix C 

c + U-"; i.e. ~ ( ~ z , ~ , ) - +  , T J ~ ~ c ( ~ ~ ~ ~ , ) ~ , ~  (A.5) 

In the particular case where there are just three distinct IRS, the transformation is 

We show now that U1, U2,  U3 can be so chosen as to bring D and E to the forms 
( 4 . 4 ~ )  and (4.4b). 

Recall first that E is an a3 X a1 matrix (a3 s cy1) and that its rank is a3. Therefore 
(a l  - c y 3 )  of its columns can be made zero by forming suitable linear combinations of the 
cy1 columns, which is equivalent to post multiplication of E by a suitable non-singular 
matrix. This matrix, say U ; ,  can be so chosen that 

EUI = ( 0  E' )  (A.7) 
where E' consists of c y 3  linearly independent columns and constitutes a non-singular 
matrix. Therefore, if we take U1 = U ; ,  U2 = I  and U3 =E' in (A.6) we find that 

A -+ U;-'A, B -+ u;-'BE' 

D -+ DU;,  E + (0, I ) .  

For notational simplicity we shall now refer to these transformed matrices as A ,  B, 
D, E. They have of course the same dimensions and ranks as the original matrices. We 
now seek to simplify D by further transformations of the type (A.6), which are to be 
restricted so as not to disturb the form (0 I )  to which E has been reduced. It is readily 
seen that the most general transformation matrices U1, U*, U3 which honour this 
restriction have the forms 

where P, Q, R, S are arbitrary matrices, subject to P, R, S being non-singular. The 
partitioning of U;' is conformable to that of E, so that the dimensions of P and R are 
(a1  - cy3) and c y 3  respectively. Under the above transformation, the matrix D (also 
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partitioned like E )  goes over into 
P Q  
O R  

= S- ' (DIP,  D I Q  +D2R) .  (A.lO) 

If D1 had rank less than (a l  - a3) ,  it would be possible to choose a P which makes some 
of the columns of D I P  null; since all the elements standing above D I P  in C are null and 
also those below (forming the null part of E ) ,  this would mean that some of the columns 
of C itself would become null. But this cannot be, if there are to be no barnacles. 
Therefore, the rank must be equal to (a1 - a3), the number of columns; these columns 
must be a linearly independent set. Since the rank of D = (Dl, D2)  is a2, 0 2  must 
contain a set of c y 2  .- (a1 - a3) linearly independent columns, which, together with the 
columns of D1,  make up the requisite a2 linearly independent columns of D1. These 
columns can be brought to the leading positions (i.e. positions immediately following 
D I P ) ,  and the remaining a3 - [a2-  (a1  - a3)]  = a1 - a2 columns made null by choosing 
appropriately the post multiplying matrices Q and R (which effect column combina- 
tions) in D I Q  +D2R. The result is that (DIP,  D I Q  +D2R) takes the form (D' ,  0) 
where D' is a square non-singular matrix of dimension a2. Choosing S = D' one gets 
the final reduced form ( I ,  0) for D : 

(A. 11) D + (I, 0) 

With these 'standard' forms for D and E, the matrix C takes the form 

0 0 0 A5 A6 Bs 

0 0 0 Ai A2 Bi 
0 0 0 A3 A ,  B3 i 

(A. 12) 

CY; =CY; = a i - a 3 ;  CY: =CY; = c Y ~ + c Y ~ - c Y ~ ;  C Y ' ~ ' = ( Y ~  = ~ r 1 - ~ ~ 2 .  (A.13) 

The dimensions of the subblocks in the partitioned form above are as indicated by the 
primed a's. For example A3 is an a ?  x CY; matrix. 

The next question is how far A and B can be simplified (without loss of generality) 
while leaving the canonical forms of D and E intact. It is easy to verify that the general 
forms of transformation matrices U1, U2, U3, which can be used for this purpose are 

with P, R ,  T non-singular. In the general case, the effect of these transformations on A 
and B is rather complicated, and there are several possible ways of proceeding. 
However, when specific types of theories are considered, such transformations can be 
used effectively to distinguish between inequivalent possibilities. 
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